How do you write a polynomial with Zeros: -2, multiplicity 2; 4, multiplicity 1; degree 3?

1 Answer
Feb 29, 2016

p(x)=x^3-12x-16p(x)=x312x16

Explanation:

For a polynomial, if x=ax=a is a zero of the function, then (x-a)(xa) is a factor of the function.

We have two unique zeros: -22 and 44. However, -22 has a multiplicity of 22, which means that the factor that correlates to a zero of -22 is represented in the polynomial twice.

Follow the colors to see how the polynomial is constructed:

"zero at "color(red)(-2)", multiplicity "color(blue)2zero at 2, multiplicity 2
"zero at "color(green)4", multiplicity "color(purple)1zero at 4, multiplicity 1

p(x)=(x-(color(red)(-2)))^color(blue)2(x-color(green)4)^color(purple)1p(x)=(x(2))2(x4)1

Thus,

p(x)=(x+2)^2(x-4)p(x)=(x+2)2(x4)

Expand:

p(x)=(x^2+4x+4)(x-4)p(x)=(x2+4x+4)(x4)

p(x)=x^3-12x-16p(x)=x312x16

We can graph the function to understand multiplicities and zeros visually:

graph{x^3-12x-16 [-6, 6, -43.83, 14.7]}

The zero at x=-2x=2 "bounces off" the xx-axis. This behavior occurs when a zero's multiplicity is even.

The zero at x=4x=4 continues through the xx-axis, as is the case with odd multiplicities.

Note that the function does have three zeros, which it is guaranteed by the Fundamental Theorem of Algebra, but one of such zeros is represented twice.