How do you write an equation for a circle with diameter are P(−2, 2) and Q(6, −6)?

1 Answer
Mar 14, 2018

I guess you meant end points of the diameter are P(-2,2)P(2,2) and Q(6,-6)Q(6,6).

Explanation:

First, you take out the midpoint of the line joining points PP and QQ.
Let it be OO.
O=((-2+6)/2,(2-6)/2)O=(2+62,262)
( Using midpoint formula)
O=(4/2,-4/2)O=(42,42)
O=(2,-2)O=(2,2)
Since, the midpoint of a diameter is the centre of the circle, and standard coordinate of the centre is O(h,k)O(h,k),
We get h=2h=2 and k=-2k=2.

Then, take out the length of the diameter using distance formula,
sqrt((-2-6)^2+(2-(-6))^2)(26)2+(2(6))2
sqrt(64+64)64+64
sqrt(128)128
sqrt(2^7)27
2*2*2sqrt(2)2222
8sqrt282
Now, radius=(diameter)/2radius=diameter2
radius=4sqrt2=42

Now, we have h=2h=2, k=-2k=2 and r=4sqrt2r=42
Let us substitute these in the standard equation of a circle,
(h-x)^2+(k-y)^2=r^2(hx)2+(ky)2=r2
(2-x)^2+(-2-y)^2=(4sqrt2)^2(2x)2+(2y)2=(42)2
4-4x+x^2+4+4y+y^2=3244x+x2+4+4y+y2=32
x^2+y^2-4x+4y=24x2+y24x+4y=24
This is our required equation.

Hope this helps :)
Pretty long one, though.