How do you write #f(x)= 2x^2+6x # into vertex form?
1 Answer
May 4, 2017
#y=2(x+1.5)^2-4.5#
Explanation:
Given -
#y=2x^2+6x#
First, find the vertex
Find
#x=(-b)/(2a)=(-6)/(2xx2)=-6/4=-1.5#
Find#y# coordinat of the vertex
#y=2(-1.5)^2+6(-1.5)#
#y=2(2.25)-9#
#y=4.5-9=-4.5#
Vertex
The vertex form of the parabola is -
#y=a(x-h)^2-k#
Where -
#a=2# the coefficient of#x^2#
#h=-1.5# this is#x# coordinate of the vertex
#k=-4.5# this is#y# coordinate of the vertex
Substitute these values.
#y=2(x-(-1.5))^2+(-4.5)#
#y=2(x+1.5)^2-4.5#
enter link description here