How do you write in vertex form for y=x^2 + 8x - 7y=x2+8x7 by completing the square?

1 Answer
Jun 13, 2015

y = x^2+8x-7 = (x+4)^2-23y=x2+8x7=(x+4)223

Explanation:

x^2+8x-7x2+8x7 is of the form ax^2+bx+cax2+bx+c

with a=1a=1, b=8b=8 and c=-7c=7.

Notice that in general:

a(x+b/(2a))^2 = ax^2+bx+b^2/(4a)a(x+b2a)2=ax2+bx+b24a

In our case b/(2a) = 8/2 = 4b2a=82=4, so we want (x+4)^2(x+4)2

(x+4)^2 = x^2+8x+16(x+4)2=x2+8x+16

So

y = x^2+8x-7y=x2+8x7

= x^2+8x+16 - 16 - 7=x2+8x+16167

= (x+4)^2 - 16 - 7=(x+4)2167

=(x+4)^2 - 23=(x+4)223