How do you write the equation of the circle containing the points J(-6, 0), K(-3, 3), and L(0, 0)?

1 Answer
Mar 19, 2018

The equation of circle is x^2+y^2+6x= 0x2+y2+6x=0

Explanation:

Let the equation of circle be x^2+y^2+2gx+2fy +c= 0x2+y2+2gx+2fy+c=0

Points j(-6,0), k(-3,3),l(0,0)j(6,0),k(3,3),l(0,0)

:. (-6)^2+0^2+2g*(-6)+2f*0 +c= 0

:. (36-12g +c= 0 or -12g+36+c=0(1) , similarly

:. (-3)^2+3^2+2g*(-3)+2f*3 +c= 0

:. (9+9-6g +6f +c= 0 or -6g+6f+18+c=0(2)

and :. 0^2+0^2+2g*0+2f*0 +c= 0

:. c= 0 . Equation (1) is now -12g+36+0=0

:. 12g=36 or g=3.Equation (2) is now

-6g+6f+18+c=0 or -6*3+6f+18+0=0 or

-18+6f+18=0 or 6f=0 :. f=0 . Hence the equation of

circle is x^2+y^2+6x= 0

graph{x^2+y^2+6x=0 [-10, 10, -5, 5]}