How do you write the partial fraction decomposition of the rational expression 1(x+6)(x2+3)?
1 Answer
Mar 25, 2018
Explanation:
Given:
1(x+6)(x2+3)
Note that
So, assuming we want a decomposition with real coefficients, it takes the form:
1(x+6)(x2+3)=Ax+6+Bx+Cx2+3
Multiplying both sides by
1=A(x2+3)+(Bx+C)(x+6)
1=(A+B)x2+(6B+C)x+(3A+6C)
Putting
1=A((−6)2+3)=39A
So:
A=139
Then from the coefficient of
A+B=0
So:
B=−A=−139
From the constant term we have:
1=3A+6C
Hence:
C=16(1−3A)=16(1−113)=213=639
So:
1(x+6)(x2+3)=139(x+6)−x−639(x2+3)