How do you write the partial fraction decomposition of the rational expression (3x^2 + 12x - 20)/(x^4 - 8x^2 + 16)3x2+12x20x48x2+16?

1 Answer
Dec 3, 2016

The answer is =-2/(x+2)^2-1/(x+2)+1/(x-2)^2+1/(x-2)=2(x+2)21x+2+1(x2)2+1x2

Explanation:

To factorise the denominator,

We use (a-b)^2=a^2-2ab+b^2(ab)2=a22ab+b2

and a^2-b^2=(a+b)(a-b)a2b2=(a+b)(ab)

So,

x^4-8x^2+16=(x^2-4)^2=(x+2)^2(x-2)^2x48x2+16=(x24)2=(x+2)2(x2)2

Therefore,

(3x^2+12x-20)/(x^4-8x^2+16)=(3x^2+12x-20)/((x+2)^2(x-2)^2)3x2+12x20x48x2+16=3x2+12x20(x+2)2(x2)2

We can now do the decomposition in partial fractions

(3x^2+12x-20)/(x^4-8x^2+16)=A/(x+2)^2+B/(x+2)+C/(x-2)^2+D/(x-2)3x2+12x20x48x2+16=A(x+2)2+Bx+2+C(x2)2+Dx2

=A(x-2)^2+B(x-2)^2(x+2)+C(x+2)^2+D(x+2)^2(x-2)=A(x2)2+B(x2)2(x+2)+C(x+2)2+D(x+2)2(x2)

Therefore,

(3x^2+12x-20)=A(x-2)^2+B(x-2)^2(x+2)+C(x+2)^2+D(x+2)^2(x-2)(3x2+12x20)=A(x2)2+B(x2)2(x+2)+C(x+2)2+D(x+2)2(x2)

Let x=2x=2, =>, 16=16C16=16C, =>, C=1C=1

Let x=-2x=2, =>, -32=16A32=16A, =>, A=-2A=2

Let x=0x=0, =>, -20=4A+8B+4C-8D20=4A+8B+4C8D

B-D=-2BD=2

Coefficients of x^3x3

0=B+D0=B+D

So, B=-1B=1 and D=1D=1

So,

(3x^2+12x-20)/(x^4-8x^2+16)=-2/(x+2)^2-1/(x+2)+1/(x-2)^2+1/(x-2)3x2+12x20x48x2+16=2(x+2)21x+2+1(x2)2+1x2