How do you write the partial fraction decomposition of the rational expression 3x2+12x20x48x2+16?

1 Answer
Dec 3, 2016

The answer is =2(x+2)21x+2+1(x2)2+1x2

Explanation:

To factorise the denominator,

We use (ab)2=a22ab+b2

and a2b2=(a+b)(ab)

So,

x48x2+16=(x24)2=(x+2)2(x2)2

Therefore,

3x2+12x20x48x2+16=3x2+12x20(x+2)2(x2)2

We can now do the decomposition in partial fractions

3x2+12x20x48x2+16=A(x+2)2+Bx+2+C(x2)2+Dx2

=A(x2)2+B(x2)2(x+2)+C(x+2)2+D(x+2)2(x2)

Therefore,

(3x2+12x20)=A(x2)2+B(x2)2(x+2)+C(x+2)2+D(x+2)2(x2)

Let x=2, , 16=16C, , C=1

Let x=2, , 32=16A, , A=2

Let x=0, , 20=4A+8B+4C8D

BD=2

Coefficients of x3

0=B+D

So, B=1 and D=1

So,

3x2+12x20x48x2+16=2(x+2)21x+2+1(x2)2+1x2