To factorise the denominator,
We use (a-b)^2=a^2-2ab+b^2(a−b)2=a2−2ab+b2
and a^2-b^2=(a+b)(a-b)a2−b2=(a+b)(a−b)
So,
x^4-8x^2+16=(x^2-4)^2=(x+2)^2(x-2)^2x4−8x2+16=(x2−4)2=(x+2)2(x−2)2
Therefore,
(3x^2+12x-20)/(x^4-8x^2+16)=(3x^2+12x-20)/((x+2)^2(x-2)^2)3x2+12x−20x4−8x2+16=3x2+12x−20(x+2)2(x−2)2
We can now do the decomposition in partial fractions
(3x^2+12x-20)/(x^4-8x^2+16)=A/(x+2)^2+B/(x+2)+C/(x-2)^2+D/(x-2)3x2+12x−20x4−8x2+16=A(x+2)2+Bx+2+C(x−2)2+Dx−2
=A(x-2)^2+B(x-2)^2(x+2)+C(x+2)^2+D(x+2)^2(x-2)=A(x−2)2+B(x−2)2(x+2)+C(x+2)2+D(x+2)2(x−2)
Therefore,
(3x^2+12x-20)=A(x-2)^2+B(x-2)^2(x+2)+C(x+2)^2+D(x+2)^2(x-2)(3x2+12x−20)=A(x−2)2+B(x−2)2(x+2)+C(x+2)2+D(x+2)2(x−2)
Let x=2x=2, =>⇒, 16=16C16=16C, =>⇒, C=1C=1
Let x=-2x=−2, =>⇒, -32=16A−32=16A, =>⇒, A=-2A=−2
Let x=0x=0, =>⇒, -20=4A+8B+4C-8D−20=4A+8B+4C−8D
B-D=-2B−D=−2
Coefficients of x^3x3
0=B+D0=B+D
So, B=-1B=−1 and D=1D=1
So,
(3x^2+12x-20)/(x^4-8x^2+16)=-2/(x+2)^2-1/(x+2)+1/(x-2)^2+1/(x-2)3x2+12x−20x4−8x2+16=−2(x+2)2−1x+2+1(x−2)2+1x−2