How do you write the point slope form of the equation given (-3,4) and (0,3)?

1 Answer
Sep 14, 2016

#y-3=-1/3(x-0)#

Explanation:

The equation of a line in #color(blue)"point-slope form"# is.

#color(red)(bar(ul(|color(white)(a/a)color(black)(y-y_1=m(x-x_1))color(white)(a/a)|)))#
where m represents the slope and # (x_1,y_1)# a point on the line.

To calculate the slope use the #color(blue)"gradient formula"#

#color(red)(bar(ul(|color(white)(a/a)color(black)(m=(y_2-y_1)/(x_2-x_1))color(white)(a/a)|)))#
where # (x_1,y_1)" and " (x_2,y_2)" are 2 coordinate points".#

here the 2 points are (-3 ,4) and (0 ,3)

let # (x_1,y_1)=(-3,4)" and " (x_2,y_2)=(0,3)#

#rArrm=(3-4)/(0+3)=-1/3#

Using either of the 2 given points for #x_1,y_1)#

Using (0 ,3) and m# =-1/3# substitute these values into the point-slope equation.

#y-3=-1/3(x-0)larr" point-slope form"#

If we distribute the brackets and rearrange .

or #y=-1/3x+3larr" slope-intercept form"#