How do you write the quadratic function in vertex form given vertex (2,-1) and point (4,3)?
1 Answer
May 12, 2017
Explanation:
#"the vertex form of a quadratic function is."#
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.
#"here " (h,k)=(2,-1)#
#rArry=a(x-2)^2-1#
#"to find a, substitute the point "(4,3)" into the equation"#
#rArr3=a(4-2)^2-1#
#rArr4a=4rArra=1#
#rArry=(x-2)^2-1larrcolor(red)" in vertex form"#