How do you write the standard equation for the circle passing through pts (8,-2), (6,2) and (3,-7)?

1 Answer
Dec 31, 2017

The equation of circle is (x-3)^2+(y+2)^2=25

Explanation:

Let the points are P(8,-2) , Q( 6,2) ,R(3,-7) and Centre of

the circle is (a,b) and radius is r

The distance from center to the given 3 points are equal.

(8-a)^2+(-2-b)^2=(6-a)^2+(2-b)^2=(3-a)^2+(-7-b)^2

(8-a)^2+(-2-b)^2=(6-a)^2+(2-b)^2

:. 64-16a+cancela^2+4+4b+cancelb^2= 36-12a+cancela^2+4-4b+cancelb^2 or

-4a+8b=-28 or 2b-a= -7(1) Similarly,

(8-a)^2+(-2-b)^2=(3-a)^2+(-7-b)^2

:. 64-16a+cancela^2+4+4b+cancelb^2= 9-6a+cancela^2+49+14b+cancelb^2 or

-10a-10b= =-10 or a+b=1(2) Adding equation(1) and (2) we

get, 3b=-6 or b =-2:. a =1-b=1-(-2)=3 :.

Centre is (3,-2) Radius is r=|PC|=sqrt ((8-a)^2+(-2-b)^2)

:. r= sqrt ((8-3)^2+(-2+2)^2)=5

The equation of circle is (x-a)^2+(y-b)^2=r^2 or

(x-3)^2+(y+2)^2=25 [Ans]