We know that,
#color(blue)((1)If , lim_(xtoa) f(x)=f(a)=>f# is continuos at #color(blue)(x=a#
OR
#color(red)(lim_(xtoa^-) f(x)=lim_(xtoa^+) f(x)=f(a)=>f # is continuos at #color(red)(x=a#
#color(violet)((2)|x|=x, x > 0#
#color(white)(.......)color(violet)(=-x , x < 0#
We have,
#color(red)(f(0)=|0|=0...to(I)#
#lim_(xto0^+)f(x)=lim_(xto0^+) |x|#
#color(white)(................)=lim_(xto0^+) x ...to(x >0 )#
#color(red)(lim_(xto0^+)f(x)=0...to (II)#
#lim_(xto0^-)f(x)=lim_(xto0^-) |x|#
#color(white)(................)=lim_(xto0^-) (-x) ...to(x < 0 )#
#color(red)(lim_(xto0^-)f(x)=0...to (III)#
From , #color(red)((I),(II), and (III)#
#color(green)(lim_(xto0^+)f(x)=lim_(xto0^-)f(x)=f(0)=0#
Hence, #f(x)=|x| # is continuous at #x=0#