How to prove that f(x)=|x| is continue at 0 ?

1 Answer
Apr 22, 2018

Please see below.

Explanation:

We know that,

color(blue)((1)If , lim_(xtoa) f(x)=f(a)=>f is continuos at color(blue)(x=a

OR

color(red)(lim_(xtoa^-) f(x)=lim_(xtoa^+) f(x)=f(a)=>f is continuos at color(red)(x=a

color(violet)((2)|x|=x, x > 0

color(white)(.......)color(violet)(=-x , x < 0

We have,

color(red)(f(0)=|0|=0...to(I)

lim_(xto0^+)f(x)=lim_(xto0^+) |x|

color(white)(................)=lim_(xto0^+) x ...to(x >0 )

color(red)(lim_(xto0^+)f(x)=0...to (II)

lim_(xto0^-)f(x)=lim_(xto0^-) |x|

color(white)(................)=lim_(xto0^-) (-x) ...to(x < 0 )

color(red)(lim_(xto0^-)f(x)=0...to (III)

From , color(red)((I),(II), and (III)

color(green)(lim_(xto0^+)f(x)=lim_(xto0^-)f(x)=f(0)=0

Hence, f(x)=|x| is continuous at x=0