We know that,
color(blue)((1)If , lim_(xtoa) f(x)=f(a)=>f is continuos at color(blue)(x=a
OR
color(red)(lim_(xtoa^-) f(x)=lim_(xtoa^+) f(x)=f(a)=>f is continuos at color(red)(x=a
color(violet)((2)|x|=x, x > 0
color(white)(.......)color(violet)(=-x , x < 0
We have,
color(red)(f(0)=|0|=0...to(I)
lim_(xto0^+)f(x)=lim_(xto0^+) |x|
color(white)(................)=lim_(xto0^+) x ...to(x >0 )
color(red)(lim_(xto0^+)f(x)=0...to (II)
lim_(xto0^-)f(x)=lim_(xto0^-) |x|
color(white)(................)=lim_(xto0^-) (-x) ...to(x < 0 )
color(red)(lim_(xto0^-)f(x)=0...to (III)
From , color(red)((I),(II), and (III)
color(green)(lim_(xto0^+)f(x)=lim_(xto0^-)f(x)=f(0)=0
Hence, f(x)=|x| is continuous at x=0