How to solve Gaussian elimination method?

#[( 5, -3, 2,|, 13), (2, -1, -3,|,1 ), (4, -2, 4,|, 12) ]#

1 Answer
Apr 12, 2017

Perform elementary row operations, until the matrix on the left is an identity matrix, then the column vector on the right will contain the solution set.

Explanation:

Given:

#[( 5, -3, 2,|, 13), (2, -1, -3,|,1 ), (4, -2, 4,|, 12) ]#

Perform elementary row operations.

We want the coefficient #A_(1,1)# to be 1 so we perform the following operation:

#R_1-R_3toR_1#

#[( 1, -1, -2,|, 1), (2, -1, -3,|,1 ), (4, -2, 4,|, 12) ]#

We want the remainder of the first column to be zeros so we perform the next 2 row operations:

#R_2-2R_1toR_2#

#[( 1, -1, -2,|, 1), (0, 1, 1,|,-1 ), (4, -2, 4,|, 12) ]#

#R_3-4R_1toR_3#

#[( 1, -1, -2,|, 1), (0, 1, 1,|,-1 ), (0, 2, 12,|, 8) ]#

We want the coefficient #A_(2,2)# to be 1 and it is, therefore, no operation is done. We want the other coefficients in column 2 to be 0 so we do the following 2 operations:

#R_1+R_2toR_1#

#[( 1, 0, -1,|, 0), (0, 1, 1,|,-1 ), (0, 2, 12,|, 8) ]#

#R_3-2R_2toR_3#

#[( 1, 0, -1,|, 0), (0, 1, 1,|,-1 ), (0, 0, 10,|,10) ]#

We want the coefficient #A_(3,3)# to be 1, therefore, we merely divide that row by 10:

#R_3/10to R_3#

#[( 1, 0, -1,|, 0), (0, 1, 1,|,-1 ), (0, 0, 1,|,1) ]#

We want the rest of the column to be zeros so we do the following 2 row operations:

#R_2-R_3 to R_2#

#[( 1, 0, -1,|, 0), (0, 1, 0,|,-2 ), (0, 0, 1,|,1) ]#

#R_1+R_3 to R_1#

#[( 1, 0, 0,|, 1), (0, 1, 0,|,-2 ), (0, 0, 1,|,1) ]#

There is an identity matrix on the left, therefore, the solution set is on the right, #x = 1, y = -2, and z = 1#