If #A=((-4, 5),(3, 2))# and #B=((-6, 2), (1/2, 3/4))#, what is #AB#?

1 Answer
Oct 18, 2014

Multiply each row of the first matrix by each column of the second matrix.

#(-4*-6)+(5*1/2)# will be the upper left element
#(-4*2)+(5*3/4)# will be the upper right element
#(3*-6)+(2*1/2)# will be the lower left element
and
#(3*2)+(2*3/4)# will be the lower right element.

Cleaning up we get #(24+5/2=52/2)# upper left
#(-8+15/4=-17/4)# upper right,
#(-18+1=-17)# lower left and,
#(6+1/2=15/2)# for lower right.

#(53/2, -17/4)#
#(-17, 15/2)#