If a projectile is shot at an angle of (7pi)/127π12 and at a velocity of 2 m/s2ms, when will it reach its maximum height?

1 Answer

Time t=(5sqrt6+5sqrt2)/98=0.1971277197" "t=56+5298=0.1971277197 second

Explanation:

For the vertical displacement yy

y=v_0 sin theta * t+1/2*g*t^2y=v0sinθt+12gt2

We maximize displacement yy with respect to tt

dy/dt=v_0 sin theta* dt/dt+1/2*g*2*t^(2-1)*dt/dtdydt=v0sinθdtdt+12g2t21dtdt

dy/dt=v_0 sin theta+g*tdydt=v0sinθ+gt

set dy/dt=0dydt=0 then solve for tt

v_0 sin theta+g*t=0v0sinθ+gt=0

t=(-v_0 sin theta)/gt=v0sinθg

t=(-2*sin ((7pi)/12))/(-9.8)t=2sin(7π12)9.8

Note: sin ((7pi)/12)=sin ((5pi)/12)=(sqrt(6)+sqrt(2))/4sin(7π12)=sin(5π12)=6+24

t=(-2*((sqrt(6)+sqrt(2)))/4)/(-9.8)t=2(6+2)49.8

t=(5sqrt6+5sqrt2)/98=0.1971277197" "t=56+5298=0.1971277197 second

God bless....I hope the explanation is useful.