If a projectile is shot at an angle of pi/6 and at a velocity of 28 m/s, when will it reach its maximum height??

1 Answer
May 4, 2016

Maximum height after release is achieved in approximately

~~1.427" seconds to 3 decimal places "color(red)( larr "corrected value")

Explanation:

Tony B

Note that sin(pi/6)=1/2

Let upwards velocity be positive and due to initial projectile force
Let downward velocity be negative and due to gravity
Let time in seconds be t and time at at any moment be t_i
Let time at maximum height be t_m
Let the unit second be represented as s
Let the unit distance be represented by m

Acceleration due to gravity is 9.81 m/s^2

Assumption: there is no drag or any other forces involved

The maximum height is when upward velocity equals downward velocity

Downward velocity at any instant i -> 9.81t_i

color(red)("Correcting an omission "->xx [sin(pi/6)=1/2])

Maximum height is achieved at " "color(red)(1/2xx)28 m/s-9.81 m/s^2xxt_m s=0

Thus " "28/(color(red)(2))color(white)(.) m/s=9.81color(white)(.) m/s^2xxt_m s

color(green)("Did you know you can treat units in the same way that you treat algebra?")

=>t_m s=(color(red)(14))/9.81 ->_("units")cancel(m)/(cancel(s))xxs^(cancel(2))/(cancel(m)

color(blue)(=> t_m~~1.427" seconds to 3 decimal places")