Is it possible to factor y= x^5+2x^4+x^3+4x^2+5x+2 ? If so, what are the factors?
1 Answer
Yes, but it's a little complicated:
x^5+2x^4+x^3+4x^2+5x+2
= (x+2)(x^4+x^2+2x+1)
=(x+2)(x^2+sqrt((sqrt(17)-1)/2)x+((2-sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8)
*(x^2-sqrt((sqrt(17)-1)/2)x+((2+sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8)
Explanation:
Let
By the rational root theorem, the only possible rational roots of
Trying these we find:
f(-2) = -32+32-8+16-10+2 = 0
So
x^5+2x^4+x^3+4x^2+5x+2 = (x+2)(x^4+x^2+2x+1)
Next, since the remaining quartic factor has no
x^4+x^2+2x+1
= (x^2+ax+b)(x^2-ax+c)
=x^4+(b+c-a^2)x^2+a(c-b)x+bc
Equating coefficients and rearranging slightly, we get:
b+c = a^2+1
c-b = 2/a
bc = 1
So:
(a^2 + 1)^2 = (b+c)^2 = (c-b)^2 + 4bc = (2/a)^2 + 4
That is:
(a^2)^2+2(a^2)+1 = 4/a^2 + 4
Multiplying through by
(a^2)^3+2(a^2)^2-3(a^2)-4 = 0
One of the solutions to this cubic in
(a^2)^3+2(a^2)^2-3(a^2)-4 = (a^2+1)((a^2)^2+a^2-4)
Hence two further roots:
a^2 = (-1+-sqrt(17))/2
In particular,
a = +-sqrt((sqrt(17)-1)/2)
We can use the positive square root, since the derivation is symmetric.
So, adding
we find:
2c = a^2+1+2/a
=(sqrt(17)-1)/2 + 1 + 2/sqrt((sqrt(17)-1)/2)
So:
c = (sqrt(17)-1)/4 + 1/2 + 1/sqrt((sqrt(17)-1)/2)
= (sqrt(17)+1)/4 + sqrt((sqrt(17)-1)/2)/((sqrt(17)-1)/2)
= (sqrt(17)+1)/4 + (2sqrt((sqrt(17)-1)/2))/(sqrt(17)-1)
= (sqrt(17)+1)/4 + (2sqrt((sqrt(17)-1)/2)(sqrt(17)+1))/16
= ((2+sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8
Similarly:
b = ((2-sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8
Putting it together:
x^4+x^2+2x+1
=(x^2+sqrt((sqrt(17)-1)/2)x+((2-sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8)
*(x^2-sqrt((sqrt(17)-1)/2)x+((2+sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8)
Ouch!