lim_(n->oo)(1^alpha+2^alpha+cdots+n^alpha)/n^(alpha+1) =?

1 Answer
Apr 27, 2017

1/(a+1).

Explanation:

Recall that, int_a^b f(x)dx=lim_(n to oo) sum_(r=1)^(r=n)hf(a+rh),

where, h=(b-a)/n.

If we take, a=0, and, b=1," so that, "h=1/n, we have,

int_0^1 f(x)dx=lim_(n to oo) sum_(r=1)^(r=n)1/n*f(r/n).......(star).

Now, the Reqd. Lim.=lim_(n to oo) (1^a+2^a+3^a+...+n^a)/n^(a+1)

=lim_(n to oo) [1/n{(1/n)^a+(2/n)^a+(3/n)^a+...+(n/n)^a}]

=lim_(n to oo) [sum_(r=1)^(r=n)1/n*(r/n)^a].

:., (star) rArr" The Limit="int_0^1 x^adx,

=[x^(a+1)/(a+1)]_0^1,

"The Limit="1/(a+1).

Enjoy Maths.!