lim_(n->oo)(1/n((n+1)(n+2)(n+3)cdots(2n))^(1/n))?

1 Answer
Dec 13, 2016

4/e

Explanation:

we have

((n+1)(n+2)(n+3)cdots(2n)) =((2n)!)/(n!)

Using Stirling formula
https://en.wikipedia.org/wiki/Stirling%27s_approximation

log_e(n!) approx nlog_en-n in

y = 1/n(((2n)!)/(n!))^(1/n)

we have

y = 1/n(((2n)^(2n)e^(-2n))/(n^n e^(-n)))^(1/n)=4/e

So the answer is

lim_(n->oo)(1/n((n+1)(n+2)(n+3)cdots(2n))^(1/n))=4/e