lim_(n->oo)((sqrt(1)+sqrt(2)+sqrt(3)+cdots+sqrt(n))/(n sqrt(n))) ?

1 Answer
Sep 6, 2016

2/3

Explanation:

enter image source here

From the above figure we can see that

sum_(k=1)^n sqrt(k) > int_(x=0)^(x=n) sqrt(x)dx = 2/3n^(3/2)

enter image source here
and from the above figure we see that

sum_(k=1)^(n-1)sqrt(k) < int_(x=0)^(x=n) sqrt(x) dx=2/3n^(3/2)

then follows

2/3 n^(3/2)-1/sqrt(n) < 2/3n^(3/2) < sum_(k=1)^nsqrt(k) < 2/3n^(3/2)+1/sqrt(n)

Finally

2/3-1/n < 1/(nsqrtn)sum_(k=1)^nsqrt(k) < 2/3 + 1/n

and as n->oo we have

1/(nsqrtn)sum_(k=1)^nsqrt(k) =2/3