Points A and B are at (4 ,7 )(4,7) and (3 ,9 )(3,9), respectively. Point A is rotated counterclockwise about the origin by (3pi)/2 3π2 and dilated about point C by a factor of 4 4. If point A is now at point B, what are the coordinates of point C?

2 Answers
Jul 22, 2018

color(indigo)("Coordinates of "C((x),(y)) = ((19),(-43))

Explanation:

A(4,7), B(3,9), "counterclockwise rotation " (3pi)/2, "dilation factor" 4

![https://teacher.desmos.com/activitybuilder/custom/566b16af914c731d06ef1953](useruploads.socratic.org)

New coordinates of A after (3pi)/2 counterclockwise rotation

A(4,7) rarr A' (7,-4)

vec (BC) = (4) vec(A'C)

b - c = (4)a' - (4)c

c = (4)a' - (3)b

color(indigo)(C((x),(y)) = (4)((7),(-4)) - (3)((3),(9)) = ((19),(-43))

Jul 23, 2018

C=(25/3,-25/3)

Explanation:

"under a counterclockwise rotation about the origin of "(3pi)/2

• " a point "(x,y)to(y,-x)

A(4,7)toA'(7,-4)" where A' is the image of A"

vec(CB)=color(red)(4)vec(CA')

ulb-ulc=4(ula'-ulc)

ulb-ulc=4ula'-4ulc

3ulc=4ula'-ulb

color(white)(3ulc)=4((7),(-4))-((3),(9))

color(white)(3ulc)=((28),(-16))-((3),(9))=((25),(-25))

ulc=1/3((25),(-25))=((25/3),(-25/3))

rArrC=(25/3,-25/3)