Points A and B are at (8 ,3 )(8,3) and (5 ,4 )(5,4), respectively. Point A is rotated counterclockwise about the origin by pi/2 π2 and dilated about point C by a factor of 3 3. If point A is now at point B, what are the coordinates of point C?

1 Answer
Jun 10, 2018

C=(-7,10)C=(7,10)

Explanation:

"under a counterclockwise rotation about the origin of "pi/2under a counterclockwise rotation about the origin of π2

• " a point "(x,y)to(-y,x) a point (x,y)(y,x)

A(8,3)toA'(-3,8)" where A' is the image of A"

vec(CB)=color(red)(3)vec(CA')

ulb-ulc=3(ula'-ulc)

ulb-ulc=3ula'-3ulc

2ulc=3ula'-ulb

color(white)(2ulc)=3((-3),(8))-((5),(4))

color(white)(2ulc)=((-9),(24))-((5),(4))=((-14),(20))

ulc=1/2((-14),(20))=((-7),(10))

rArrC=(-7,10)