Prove that sum_(k=1)^n 1/(sin2^kx)=cot x - cot 2^nxnk=11sin2kx=cotxcot2nx for every x ne (kpi)/2^k, x in RR, n in NN^+?

2 Answers
Dec 1, 2016

Not for this sum but for a similar one. Please see explanation.

Explanation:

I get a similar result for

sum 1/sin^(2^k)x

=(1-1/sin^(2^(n+1))x))/(1-1/sin^2x)-1,

using 1+X + X^2+...+X^n=(1-X^(n+1))/(1-X)

=-tan^2x(1-csc^(2^(n+1))x)-1

=sec^2x(csc^(2^n) x-1).

I admit that I don't get any idea, for solving the given problem.

Dec 1, 2016

See below.

Explanation:

Always is worth to read Ramanujan's Third Notebook.

With the identity

cot(x)=cot(x/2)-csc(x) we get

1/sin(2^kx)=cot(2^(k-1)x)-cot(2^kx)

so we can build a telescopic series such that

( (1/sin(2x)=cot(x)-cot(2x)), (1/sin(2^2x)=cot(2x)-cot(2^2x)), (cdots=cdots), (1/sin(2^kx)=cot(2^(k-1)x)-cot(2^kx)) )

summing up we get

sum_(k=1)^n 1/sin(2^kx) = cot(x)-cot(2^nx)