Show that (n+2)!+(n+1)!+n!=n!(n+2)^2 ?

1 Answer
Oct 10, 2017

See explanation

Explanation:

Start with the expression on the left:

(n+2)!+(n+1)!+n!

Simplify using factorials:

(n+2)(n+1)n!+(n+1)n!+n!

Factor out the n!:

n!((n+2)(n+1)+(n+1)+1)

Simplify inside the parentheses:

n!(n^2+3n+2+n+2)

n!(n^2+4n+4)

Factor:

n!(n+2)^2

So:

(n+2)!+(n+1)!+n!=n!(n+2)^2