Use the Debye-Huckel equation to evaluate #gamma_(pm)# for a #"0.0200 mol/kg"# #"HCl"# solution, with methanol as the solvent, at #25^@ "C"# and #"1 atm"#?

The answer is #gamma_(pm) = 0.6304#. I am writing this answer because this equation is rather difficult to evaluate correctly.

The density of methanol at this #T# and #P# is #"0.787 g/cm"^3#, while its dielectric constant is #epsilon_r = 32.6#.

Main Equation:

#ln gamma_(pm) = -|z_(+)z_(-)|(A I_m^"1/2")/(1 + BaI_m^"1/2")#

Sub-Equations:

#A = (2piN_A rho_A)^"1/2"(e^2/(4piepsilon_0 epsilon_(r,A)k_BT))^"3/2"#

#B = e((2N_arho_A)/(epsilon_0 epsilon_(r,A) k_B T))^"1/2"#

Molal-scale Ionic Strength:
#I_m = sum_i z_i^2 m_i = stackrel("If single strong electrolyte")overbrace(1/2 |z_(+)z_(-)|(nu_(+) + nu_(-)) m_i)#

Assume #a ~~ 3xx10^(-10) "m"#, or 3 angstroms, the mean ionic radius (including the hydration sphere).

Definitions:

  • #gamma_(pm)# is the activity coefficient of a solution containing some set of strong electrolytes, ignoring ion pairing interactions.
  • #nu_(+)# (#nu_(-)#) is the stoichiometric coefficient of the cation (anion).
  • #z_(-)# (#z_(+)#) is the charge of the anion (cation).
  • #m_i# is the molality of the solute in #"mol/kg"#.
  • #N_A# is Avogadro's number, #6.022xx10^(23) "mol"^(-1)#.
  • #rho_A# is the density of the solvent in #"kg/m"^3#.
  • #epsilon_0 = 8.854xx10^(-12)# #"C"^2"/N"cdot"m"^2# is the vacuum permittivity.
  • #epsilon_(r,A)# is the dielectric constant of the solvent, with no units.
  • #k_B = 1.3807xx10^(-23)# #"J/K"# is the Boltzmann constant.
  • #T# is the temperature in #"K"#.
  • #e# is the proton charge, #1.602xx10^(-19)# #"C"#

1 Answer
Nov 21, 2016

From the definitions above, I will evaluate #A# and #B#, followed by #I_m#, and then #ln gamma_(pm)#, and then #gamma_(pm)#.

Sub-Equation Evaluations

#color(green)(A) = (2piN_A rho_A)^"1/2"(e^2/(4piepsilon_0 epsilon_(r,A)k_BT))^"3/2"#

#= (2pi(6.022xx10^(23) "mol"^(-1))("787 kg/m"^3))^"1/2"#
#[(1.602xx10^(-19) "C")^2/(4pi(8.854xx10^(-12) "C"^2"/N"cdot"m"^2)(32.6)(1.3807xx10^(-23) "J/K")("298.15 K"))]^"3/2"#

#= color(green)(3.8885)# #color(green)(("kg"/"mol")^"1/2")#

#color(green)(B) = e((2N_Arho_A)/(epsilon_0 epsilon_(r,A) k_BT))^"1/2"#

#= (1.602xx10^(-19) "C")#
#[(2(6.022xx10^(23) "mol"^(-1))("787 kg/m"^3))/((8.854xx10^(-12) "C"^2"/N"cdot"m"^2)(32.6)(1.3807xx10^(-23) "J/K")("298.15 K"))]^"1/2"#

#= color(green)(4.5245xx10^9)# #color(green)(("kg"/"mol")^"1/2" "m"^(-1))#

Now that those crazy ones are out of the way, here's the fairly easy one. The molal-scale ionic strength is the measure of total ion concentration, basically. Here's how you could use the equation:

#color(green)(I_m) = 1/2sum_i z_i^2 m_i#

#= 1/2[z_(+)^2m_(+) + z_(-)^2 m_(-)]#

#= 1/2[z_(+)^2 nu_(+)m_i + z_(-)^2nu_(-)m_i]#

#= 1/2[|z_(+)z_(-)|nu_(+)m_i + |z_(+)z_(-)|nu_(-)m_i]#

#= 1/2|z_(+)z_(-)|(nu_(+) + nu_(-))m_i#

#= 1/2|1*-1|(1+1)("0.0200 mol HCl"/"kg methanol") = color(green)("0.0200 mol HCl"/"kg methanol")#

Main Equation Evaluation

Now that those are calculated, we can use them in the main equation to get #gamma_(pm)#. Again, assuming #a ~~ 3xx10^(-10) "m"#.

#ln gamma_(pm) = -|z_(+)z_(-)|(A I_m^"1/2")/(1 + BaI_m^"1/2")#

#= -|1*1|#
#[(3.8885 ("kg"/"mol")^"1/2"("0.0200 mol"/"kg")^"1/2")/(1 + (4.5245xx10^9 ("kg"/"mol")^"1/2" "m"^(-1))(3xx10^(-10) "m")("0.0200 mol"/"kg")^"1/2")]#

#= -0.4614#

Therefore, we finally have that:

#color(blue)(gamma_(pm)) = e^(ln gamma_(pm)) = color(blue)(0.6304)#