Using the integral test, how do you show whether sum 1/(nln(3n))1nln(3n) diverges or converges from n=1 to infinity?

1 Answer
Mar 31, 2018

Diverges.

Explanation:

Let f(x)=1/(xln3x)f(x)=1xln3x. Now, the integral test tells us that if f(x)f(x) is positive, continuous, and decreasing on [k, oo)[k,), the convergence or divergence of int_k^oof(x)dxkf(x)dx will tell us about the convergence or divergence of sum_(n=k)^oof(n)n=kf(n).

So, we have sum_(n=1)^oo1/(nln3n)n=11nln3n and we will be evaluating int_1^oo1/(xln3x)dx11xln3xdx.

First, let's find the general antiderivative for intdx/(xln3x).dxxln3x.

Let u=ln(3x), du=(3/(3x))dx=dx/xu=ln(3x),du=(33x)dx=dxx

So, we then have int(du)/u=ln|u|=ln|ln(3x)|duu=ln|u|=ln|ln(3x)|

Now,

int_1^oodx/(xln3x)=lim_(t->oo)int_1^tdx/(xln3x)=lim_(t->oo)(ln|ln3x|)|_1^t

Evaluate the limit:

lim_(t->oo)(ln(ln3t)-ln(ln3))=oo-ln(ln3)

We can drop the absolute value bars. Not working with any negatives.

The integral diverges; therefore, so does the series.