Using the limit definition, how do you differentiate #f(x)=x^3 + x#? Calculus Derivatives Limit Definition of Derivative 1 Answer Lovecraft Nov 14, 2015 #dy/dx = 3x^2 + 1# Explanation: We have #y = x^3 + x# So #dy/dx = lim_(Deltax rarr 0)(Deltay)/(Deltax)# For ease of typing let's say #Deltax = h# #dy/dx = lim_(h rarr 0)((x+h)^3 + x + h - x^3 - x)/h# #dy/dx = lim_(h rarr 0)(x^3 + 3x^2h + 3xh^2 + h^3 + x + h - x^3 - x)/h# #dy/dx = lim_(h rarr 0)(cancel(x^3) + 3x^2h + 3xh^2 + h^3 cancel(+x) + h cancel(- x^3) cancel(- x))/h# #dy/dx = lim_(h rarr 0)(3x^2h + 3xh^2 + h^3 + h)/h# #dy/dx = lim_(h rarr 0)3x^2 + 3xh + h^2 + 1# #dy/dx = 3x^2 + 1# Answer link Related questions What is the limit definition of the derivative of the function #y=f(x)# ? Ho do I use the limit definition of derivative to find #f'(x)# for #f(x)=3x^2+x# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=sqrt(x+3)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=1/(1-x)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=x^3-2# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=1/sqrt(x)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=5x-9x^2# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=sqrt(2+6x)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=mx+b# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=c# ? See all questions in Limit Definition of Derivative Impact of this question 1690 views around the world You can reuse this answer Creative Commons License