What are all the possible rational zeros for f(x)=2x^3+5x^2+4x+1f(x)=2x3+5x2+4x+1 and how do you find all zeros?

1 Answer
Sep 11, 2016

the zeroes are. -1,-1,-1/21,1,12.

Explanation:

f(x)=2x^3+5x^2+4x+1f(x)=2x3+5x2+4x+1

Note that, the sum of the co-effs. of odd-powered terms of

xx=2+4=6, and, that of even-powered=5+1=6.=5+1=6..

:. (x+1)" is a factor of "f(x).

Now, f(x)=2x^3+5x^2+4x+1

=ul(2x^2+2x^2)+ul(3x^2+3x)+ul(x+1)

=2x^2(x+1)+3x(x+1)+1(x+1)

=(x+1)(2x^2+3x+1)

(x+1){ul(2x^2+2x)+ul(x+1)}

=(x+1){2x(x+1)=1(x+1)}

=(x+1){(x+1))(2x+1)}

=(x+1)^2(2x+1)

Hence, the zeroes are. -1,-1,-1/2.