We need to differentiate a quotient
#(u/v)'=(u'v-uv')/v^2#
Here
#u=x#, #=>#, #u'=1#
#v=x^2+4#,, #=>#,#v'=2x#
Therefore,
#f'(x)=(1*(x^2+4)-x*(2x))/(x^2+4)^2#
#=(x^2+4-2x^2)/(x^2+4)^2=(4-x^2)/(x^2+4)^2#
#=((2+x)(2-x))/(x^2+4)^2#
The critical values are when #f'(x)=0#
#(2+x)(2-x)=0#
#x=-2# and #x=-2#
Let's calculate #f''(x)#
#u=4-x^2#, #=>#, #u'=-2x#
#v=(x^2+4)^2#, #=>#, #v'(x)=4x(x^2+4)#
#f''(x)=(-2x(x^2+4)^2-4x(4-x^2)(x^2+4))/(x^2+4)^4#
#=(cancel(x^2+4)(-2x(x^2+4)-4x(4-x^2)))/(cancel(x^2+4)(x^2+4)^3)#
#=(-2x^3-8x-16x+4x^3)/(x^2+4)^3#
#=(2x^3-24x)/(x^2+4)^3#
#=(2x(x^2-12))/(x^2+4)^3#
When #f''(x)=0#, we have inflexion points
#2x(x^2-12)=0# when #x=0# ; #x=sqrt12=2sqrt3# and #x=-sqrt12=-2sqrt3#
When #x=-2# , #f''(x)>0#, so we have a min
When #x=2# , #f''(x)<0#, so we have a max
graph{x/(x^2+4) [-3.895, 3.9, -1.948, 1.947]}