What are the points of inflection, if any, of f(x) = x^6 + 3x^5 - (15/2)x^4 - 40x^3 - 60x^2 + 8x + 5 f(x)=x6+3x5(152)x440x360x2+8x+5?

1 Answer
Nov 25, 2017

Points of inflection occur at x=-1,-2x=1,2 and 22.

Explanation:

At point of inflection (d^2f(x))/(dx^2)=0d2f(x)dx2=0

As f(x) = x^6+3x^5-(15/2)x^4-40x^3-60x^2+8x+5f(x)=x6+3x5(152)x440x360x2+8x+5

(df)/(dx)=6x^5+15x^4-30x^3-120x^2-120x+8dfdx=6x5+15x430x3120x2120x+8

and (d^2f(x))/(dx^2)=30x^4+60x^3-90x^2-240x-120d2f(x)dx2=30x4+60x390x2240x120

Hence points of inflection are given by 30x^4+60x^3-90x^2-240x-120=030x4+60x390x2240x120=0

or x^4+2x^3-3x^2-8x-4=0x4+2x33x28x4=0

Using factor theorem we have zeros at -1,-21,2 and 22

(x-2)(x+2)(x+1)^2=0(x2)(x+2)(x+1)2=0

Hence, points of inflection occur at x=-1,-2x=1,2 and 22.

Graph not drrawn to scale (shrunk vertically).
graph{x^6+3x^5-(15/2)x^4-40x^3-60x^2+8x+5 [-4, 4, -200, 200]}