What are the points of inflection of f(x)=x^2 / (x^2 + 49) f(x)=x2x2+49?

1 Answer
Oct 26, 2016

The points of inflection are (7/sqrt3,1/4)(73,14) and (-7/sqrt3,1/4)(73,14)

Explanation:

The points of inflections are when f''(x)=0

Let start by calculating the derivatves, we use f'(u/v)=(u'v-uv')/v^2

So f'(x)=(2x(x^2+49)-x^2(2x))/(x^2+49)^2=(98x)/(x^2+49)^2

And
f''(x)=(98(x^2+49)^2-98x(x^2+49)*2*2x)/((x^2+49)^4)

=(98(x^2+49)((x^2+49)-4x^2))/((x^2+49)^4)
=(98(49-3x^2))/((x^2+49)^3
so f''(x)=0 when 49-3x^2=0

that is x=+-7/sqrt3
And y=(49/3)/(49/3+49)=1/4
So the points are (7/sqrt3,1/4) and (-7/sqrt3,1/4)