What are the points of inflection of #f(x)=x^2 / (x^2 + 49) #?

1 Answer
Oct 26, 2016

The points of inflection are #(7/sqrt3,1/4)# and #(-7/sqrt3,1/4)#

Explanation:

The points of inflections are when #f''(x)=0#

Let start by calculating the derivatves, we use #f'(u/v)=(u'v-uv')/v^2#

So #f'(x)=(2x(x^2+49)-x^2(2x))/(x^2+49)^2=(98x)/(x^2+49)^2#

And
#f''(x)=(98(x^2+49)^2-98x(x^2+49)*2*2x)/((x^2+49)^4)#

#=(98(x^2+49)((x^2+49)-4x^2))/((x^2+49)^4)#
#=(98(49-3x^2))/((x^2+49)^3#
so #f''(x)=0# when #49-3x^2=0#

that is #x=+-7/sqrt3#
And #y=(49/3)/(49/3+49)=1/4#
So the points are #(7/sqrt3,1/4)# and #(-7/sqrt3,1/4)#