What are the Special Products of Polynomials?
1 Answer
Jan 5, 2015
The general form for multiplying two binomials is:
Special products:
-
the two numbers are equal, so it's a square:
#(x+a)(x+a)=(x+a)^2=x^2+2ax+a^2# , or
#(x-a)(x-a)=(x-a)^2=x^2-2ax+a^2#
Example :#(x+1)^2=x^2+2x+1#
Or:#51^2=(50+1)^2=50^2+2*50+1=2601# -
the two numbers are equal, and opposite sign:
#(x+a)(x-a)=x^2-a^2#
Example :#(x+1)(x-1)=x^2-1#
Or:#51*49=(50+1)(50-1)=50^2-1=2499#