What does #(3+7i)/(12+5i)# equal in a+bi form?
1 Answer
Oct 23, 2015
#(3+7i)/(12+5i) = 71/169 + 69/169i#
Explanation:
Multiply numerator and denominator by the conjugate of the denominator as follows:
#(3+7i)/(12+5i) = ((3+7i)(12-5i))/((12+5i)(12-5i))#
#=(36-15i+84i-35i^2)/(12^2-5^2i^2)#
#=((36+35) + (84-15)i)/(144+25)#
#=(71+69i)/169#
#=71/169 + 69/169i#