What is #2sin(theta/4)-cos(theta/2)# in terms of trigonometric functions of a unit #theta#?

1 Answer
Mar 31, 2017

#2sin(theta/4)-cos(theta/2)=sqrt(2-sqrt(1+costheta))-sqrt((1+costheta)/2)#

Explanation:

We can use the identities #cosA=sqrt((1+cos2A)/2)# and #sinA=sqrt((1-cos2A)/2)#

Hence, #2sin(theta/4)-cos(theta/2)#

= #2sqrt((1-cos(theta/2))/2)-sqrt((1+costheta)/2)#

= #2sqrt((1-sqrt(1+costheta)/2)/2)-sqrt((1+costheta)/2)#

= #2sqrt((2-sqrt(1+costheta))/4)-sqrt((1+costheta)/2)#

= #sqrt(2-sqrt(1+costheta))-sqrt((1+costheta)/2)#