The given differential equation is
#dy/dx=e^(y+2x)#
#dy/dx=e^(y)*e^(2x)#
Multiplying both sides by #dx#
#dy/dx*dx=e^(y)*e^(2x)*dx#
#dy/cancel(dx)*cancel(dx)=e^(y)*e^(2x)*dx#
#dy=e^(y)*e^(2x)*dx#
Dividing both sides by #e^y#
#dy/e^y=(e^(y)*e^(2x)*dx)/e^y#
#dy/e^y=(cancel(e^(y))*e^(2x)*dx)/cancel(e^y)#
#dy/e^y=e^(2x)*dx#
#e^(-y)*dy-e^(2x)*dx=0#
Integrating both sides of the equation
#int e^(-y)*dy-int e^(2x)*dx=int 0#
#-1*int e^(-y)*(-1)dy-1/2*int e^(2x)*2*dx=int 0#
#-1* e^(-y)-1/2* e^(2x)=C_1#
# e^(-y)+1/2* e^(2x)+C_1=0#
#e^(2x)+2e^(-y)+C=0#
God bless...I hope the explanation is useful.