What is #cos(theta/2)-2cot(theta/2)# in terms of trigonometric functions of a unit #theta#?

1 Answer
Sep 18, 2016

#{sintheta-2sqrt(2(1+costheta))}/sqrt(2(1-costheta)#.

Explanation:

#cos(theta/2)-2cot(theta/2)=cos(theta/2)-2*cos(theta/2)/sin(theta/2)#

#={cos(theta/2)sin(theta/2)-2cos(theta/2)}/sin(theta/2)#.

Multiplying by #2# in #Nr. and Dr.#, we get,

the Exp.#={2cos(theta/2)sin(theta/2)-4cos(theta/2)}/(2sin(theta/2))#.

Here, we use the Identities :

# (i) :2sinxcosx=sin2x; (ii) : 1-cos2x=2sin^2x;#
# (iii) : 1+cos2x=2cos^2x#.

Hence,

#"The Exp.="{sintheta-4sqrt((1+costheta)/2)}/(2sqrt((1-costheta)/2)#

#={sintheta-2sqrt(2(1+costheta))}/sqrt(2(1-costheta)#.

Enjoy Maths.!