What is #(costheta)/3# in terms of #tantheta#?

1 Answer
Dec 28, 2015

#costheta/3=+-1/(3sqrt(tan^2theta+1)#

Explanation:

We know that #Sintheta/Costheta=Tantheta#
#impliesSin^2theta/cos^2theta=tan^2theta#
#impliescos^2theta=sin^2theta/tan^2theta#
Also #Sin^2theta=1-cos^2theta#

#implies cos^2theta=(1-cos^2theta)/tan^2theta#

#implies cos^2theta=1/tan^2theta-cos^2theta/tan^2theta#

#implies cos^2theta+cos^2theta/tan^2theta=1/tan^2theta#

#implies cos^2theta(1+1/tan^2theta)=1/tan^2theta#

#implies cos^2theta(1+1/tan^2theta)=1/tan^2theta#

#implies cos^2theta=(1/tan^2theta)/(1+1/tan^2theta)#

#implies cos^2theta=1/(tan^2theta+1)#

#implies costheta=+-sqrt(1/(tan^2theta+1))#

#implies costheta=+-1/sqrt(tan^2theta+1)#

#implies costheta/3=+-(1/sqrt(tan^2theta+1))/3#

#implies costheta/3=+-1/(3sqrt(tan^2theta+1)#