What is #cottheta-sectheta+costheta# in terms of #sintheta#?
1 Answer
Jan 15, 2016
Explanation:
Express everything in terms of
#=costheta/sintheta-1/costheta+costheta#
Get a common denominator.
#=cos^2theta/(costhetasintheta)-sintheta/(costhetasintheta)+(cos^2thetasintheta)/(costhetasintheta)#
Combine.
#=(cos^2theta-sintheta+cos^2thetasintheta)/(costhetasintheta)#
Here, use the identities:
#cos^2theta=1-sin^2theta# #2costhetasintheta=sin2theta=>costhetasintheta=(sin2theta)/2#
#=((1-sin^2theta)-sintheta+(1-sin^2theta)sintheta)/((sin2theta)/2)#
#=(1-sin^2theta-sintheta+sin-sin^3theta)/((sin2theta)/2)#
#=(2(1-sin^2theta-sin^3theta))/(sin2theta)#