What is #cot(theta/2)# in terms of #csctheta#?

1 Answer

It is

#cot²(x) + 1 = csc²(x)#

hence for #x=theta/2#

#cot(theta/2)=sqrt(csc^2(theta/2)-1)#

But

#csc(theta/2)=1/(sin(theta/2))=1/(sin(theta)/[2*cos(theta/2)])= 2*cos(theta/2)/(sin(theta))#

But #cos(2theta)=2cos^2theta-1=> cos^2theta=1/2*(1+cos(2theta))#

Hence #cos(theta/2)=1/sqrt2*(1+costheta)=1/sqrt2*[1+sqrt(1-sintheta)]=> cos(theta/2)=1/sqrt2*[1+sqrt(1-1/(csctheta))]#

And

#csc(theta/2)=2*cos(theta/2)/(sin(theta))=> csc(theta/2)=2*[1/sqrt2*[1+sqrt(1-1/(csctheta))]]*csctheta=> csc(theta/2)=sqrt2*csctheta*[1+sqrt(1-1/(csctheta))]#

Finally

#cot(theta/2)=sqrt([sqrt2*csctheta*(1+sqrt(1-1/(csctheta)))]^2-1)#