What is cot(theta/2) in terms of csctheta?

1 Answer

It is

cot²(x) + 1 = csc²(x)

hence for x=theta/2

cot(theta/2)=sqrt(csc^2(theta/2)-1)

But

csc(theta/2)=1/(sin(theta/2))=1/(sin(theta)/[2*cos(theta/2)])= 2*cos(theta/2)/(sin(theta))

But cos(2theta)=2cos^2theta-1=> cos^2theta=1/2*(1+cos(2theta))

Hence cos(theta/2)=1/sqrt2*(1+costheta)=1/sqrt2*[1+sqrt(1-sintheta)]=> cos(theta/2)=1/sqrt2*[1+sqrt(1-1/(csctheta))]

And

csc(theta/2)=2*cos(theta/2)/(sin(theta))=> csc(theta/2)=2*[1/sqrt2*[1+sqrt(1-1/(csctheta))]]*csctheta=> csc(theta/2)=sqrt2*csctheta*[1+sqrt(1-1/(csctheta))]

Finally

cot(theta/2)=sqrt([sqrt2*csctheta*(1+sqrt(1-1/(csctheta)))]^2-1)