What is f(x) = int -2x^2+1/xdx if f(2)=-1 ? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer Ratnaker Mehta Feb 17, 2017 f(x)=(-2x^3)/3+ln|x|+13/3-ln2, or, f(x)=1/3(13-2x^3)+ln|x/2|. Explanation: f(x)=int(-2x^2+1/x)dx=int-2x^2dx+int1/xdx =-2intx^2dx+ln|x|=-2(x^(2+1)/(2+1))+ln|x| :. f(x)=(-2x^3)/3+ln|x|+C........(star) But, f(2)=-1 rArr ((-2)(2)^3)/3+ln|2|+C=-1 rArr C=16/3-1-ln2=13/3-ln2. Hence, by (star), f(x)=(-2x^3)/3+ln|x|+13/3-ln2, or, f(x)=1/3(13-2x^3)+ln|x/2|. Enjoy Maths.! Answer link Related questions How do you find the constant of integration for intf'(x)dx if f(2)=1? What is a line integral? What is f(x) = int x^3-x if f(2)=4 ? What is f(x) = int x^2+x-3 if f(2)=3 ? What is f(x) = int xe^x if f(2)=3 ? What is f(x) = int x - 3 if f(2)=3 ? What is f(x) = int x^2 - 3x if f(2)=1 ? What is f(x) = int 1/x if f(2)=1 ? What is f(x) = int 1/(x+3) if f(2)=1 ? What is f(x) = int 1/(x^2+3) if f(2)=1 ? See all questions in Evaluating the Constant of Integration Impact of this question 1662 views around the world You can reuse this answer Creative Commons License