What is f(x) = int -2x^2+1/xdx if f(2)=-1 ?

1 Answer
Feb 17, 2017

f(x)=(-2x^3)/3+ln|x|+13/3-ln2, or,

f(x)=1/3(13-2x^3)+ln|x/2|.

Explanation:

f(x)=int(-2x^2+1/x)dx=int-2x^2dx+int1/xdx

=-2intx^2dx+ln|x|=-2(x^(2+1)/(2+1))+ln|x|

:. f(x)=(-2x^3)/3+ln|x|+C........(star)

But, f(2)=-1 rArr ((-2)(2)^3)/3+ln|2|+C=-1

rArr C=16/3-1-ln2=13/3-ln2.

Hence, by (star),

f(x)=(-2x^3)/3+ln|x|+13/3-ln2, or,

f(x)=1/3(13-2x^3)+ln|x/2|.

Enjoy Maths.!