What is f(x) = int (3x+1)^2-6x-1 dxf(x)=∫(3x+1)2−6x−1dx if f(2) = 1 f(2)=1?
1 Answer
Aug 24, 2016
Explanation:
The first step is to simplify the expression to be integrated.
(3x+1)^2-6x-1=9x^2+6x+1-6x-1=9x^2(3x+1)2−6x−1=9x2+6x+1−6x−1=9x2
rArrint9x^2dx⇒∫9x2dx integrate using
color(blue)"power rule for integration"power rule for integration
color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(intax^n dx=a/(n+1)x^(n+1))color(white)(a/a)|)))
rArrint9x^2dx=9/3x^3+c=3x^3+c" c is a constant" Using f(2) = 1 allows c to be calculated.
3(2)^3+c=1rArr24+c=1rArrc=-23
rArrf(x)=3x^3-23