What is f(x) = int 3x-2cscx dxf(x)=3x2cscxdx if f((5pi)/4) = 0 f(5π4)=0?

1 Answer
Jan 11, 2018

f(x) = 3/2x^2+2ln|csc(x)+cot(x)|-21.3691f(x)=32x2+2ln|csc(x)+cot(x)|21.3691

Explanation:

int3x-2cscxdx3x2cscxdx

=int3xdx-2intcscxdx=3xdx2cscxdx

To integrate the second integral re write and use the following substitution:

intcscxdx=intcscx(cscx+cotx)/(cscx+cotx)dxcscxdx=cscxcscx+cotxcscx+cotxdx

u=cscx+cotxu=cscx+cotx
-> du=-cotxcscx-csc^2xdx=-cscx(cscx+cotx)dxdu=cotxcscxcsc2xdx=cscx(cscx+cotx)dx

Now substitute into the integral:

intcscx(cscx+cotx)/(cscx+cotx)dx=-int(du)/u=-lnu+C_0cscxcscx+cotxcscx+cotxdx=duu=lnu+C0

Reverse the substitution:

-ln|u| +C_0 = -ln|csc(x)+cot(x)|+C_0ln|u|+C0=ln|csc(x)+cot(x)|+C0

So, returning to the original integral:

int3xdx-2intcscxdx=3/2x^2+2ln|csc(x)+cot(x)|+C3xdx2cscxdx=32x2+2ln|csc(x)+cot(x)|+C

Now solve for CC.

f((5pi)/4)f(5π4)
=3/2((5pi)/4)^2+2ln|csc((5pi)/4)+cot((5pi)/4)|+C=0=32(5π4)2+2lncsc(5π4)+cot(5π4)+C=0

75/32pi^2+2ln(-sqrt(2)+1)+C7532π2+2ln(2+1)+C

->21.3691+C=0-> C=-21.3691 21.3691+C=0C=21.3691

f(x) = 3/2x^2+2ln|csc(x)+cot(x)|-21.3691f(x)=32x2+2ln|csc(x)+cot(x)|21.3691