What is f(x) = int 5x-2xe^(x)dxf(x)=5x2xexdx if f(0)=-2 f(0)=2?

1 Answer
Jul 11, 2017

f(x)=int5x*dx-int2x*e^x*dxf(x)=5xdx2xexdx

=5/2*x^2-(2x*e^x-int2e^x*dx)=52x2(2xex2exdx)

=5/2*x^2-(2x-2)*e^x+C=52x2(2x2)ex+C

Let x=0x=0, C+2=-2C+2=2, hence C=-4C=4.

Thus, f(x)=5/2*x^2-(2x-2)*e^x-4f(x)=52x2(2x2)ex4

Explanation:

1) Take integral.

2) Impose f(0)=-2f(0)=2 condition.