Use du=#(du)/(dx)#dx. Now,
#F(x)=int((1+cos 2x)/2-tan x (sec^2x-1)+sin x) dx#
#=intd(1/2x)+int d((1/2((sin 2x)/2))-int d((tan^2x)/2)#
#+int d(-ln (cos x))+int d(-cos x)#
#=1/2x+1/4 sin 2x-1/2 tan^2x-ln cos x-cos x + C#
#F(pi/3)=1/6pi+1/4 sin (2/3pi)-tan^2(1/3pi)-ln (cos (1/3pi)-cos (1/3pi) +C#
#=1/6pi+1/8sqrt 3 - 3-ln(1/2)-1/2+C#
#=1#
So, #C=9/2-1/8sqrt 3- ln 2-pi/6#