What is F(x) = int cos^2x-tan^3x+sinx dxF(x)=cos2xtan3x+sinxdx if F(pi/3) = 1 F(π3)=1?

1 Answer
Nov 3, 2016

F(x)=1/2x+1/4 sin 2x-1/2 tan^2x-ln cos x-cos x+9/2-1/8sqrt 3- ln 2-pi/6F(x)=12x+14sin2x12tan2xlncosxcosx+92183ln2π6

Explanation:

Use du=(du)/(dx)dudxdx. Now,

F(x)=int((1+cos 2x)/2-tan x (sec^2x-1)+sin x) dxF(x)=(1+cos2x2tanx(sec2x1)+sinx)dx

=intd(1/2x)+int d((1/2((sin 2x)/2))-int d((tan^2x)/2)=d(12x)+d((12(sin2x2))d(tan2x2)

+int d(-ln (cos x))+int d(-cos x)+d(ln(cosx))+d(cosx)

=1/2x+1/4 sin 2x-1/2 tan^2x-ln cos x-cos x + C=12x+14sin2x12tan2xlncosxcosx+C

F(pi/3)=1/6pi+1/4 sin (2/3pi)-tan^2(1/3pi)-ln (cos (1/3pi)-cos (1/3pi) +CF(π3)=16π+14sin(23π)tan2(13π)ln(cos(13π)cos(13π)+C

=1/6pi+1/8sqrt 3 - 3-ln(1/2)-1/2+C=16π+1833ln(12)12+C

=1=1

So, C=9/2-1/8sqrt 3- ln 2-pi/6C=92183ln2π6