What is f(x) = int cos^2x-tan^3x+sinx dxf(x)=cos2xtan3x+sinxdx if f(pi/6) = 1 f(π6)=1?

1 Answer
Mar 29, 2016

f(x)=(2x+sin2x)/4-tan^2x/2-lnabs(cosx)-cosx+(28-2pi-3sqrt(3))/24+lnabs(sqrt(3)/2)+sqrt(3)/2f(x)=2x+sin2x4tan2x2ln|cosx|cosx+282π3324+ln32+32

Explanation:

Begin by using the sum rule to break intcos^2x-tan^3x+sinxdxcos2xtan3x+sinxdx into:
intcos^2xdx-inttan^3xdx+intsinxdxcos2xdxtan3xdx+sinxdx

First Integral
Since we don't know what intcos^2xdxcos2xdx is immediately, we have to tap into our trig knowledge. I hope you remember (or you can find, in your calculus textbook perhaps), the formula for cos^2xcos2x:
cos^2x=1/2(1+cos2x)cos2x=12(1+cos2x)

Try to integrate this:
intcos^2xdx=int1/2(1+cos2x)dxcos2xdx=12(1+cos2x)dx
color(white)(XX)=1/2(int1dx+intcos2xdx)XX=12(1dx+cos2xdx)
color(white)(XX)=1/2(x+C_1+(sin2x)/2+C_2)XX=12(x+C1+sin2x2+C2)
color(white)(XX)=(2x+sin2x)/4+CXX=2x+sin2x4+C

Second Integral
Again, we don't know what inttan^3xdxtan3xdx is, so we use our knowledge of trig (i.e. Pythagorean Identities) to solve it:
inttan^3xdx=inttanxtan^2xdxtan3xdx=tanxtan2xdx
color(white)(XX)=inttanx(sec^2x-1)dxXX=tanx(sec2x1)dx
color(white)(XX)=inttanxsec^2xdx-inttanxdxXX=tanxsec2xdxtanxdx
For the first of these, let u=tanxu=tanx and (du)/dx=sec^2xdudx=sec2x; that makes du=sec^2xdxdu=sec2xdx:
inttanxsec^2xdx=intudu=u^2/2+C_1tanxsec2xdx=udu=u22+C1
Because u=tanxu=tanx, inttanxsec^2xdx=(tanx)/2+C_1tanxsec2xdx=tanx2+C1.

The second integral here, inttanxdxtanxdx, is simply lnabs(cosx)+C_2ln|cosx|+C2. Combining these two results, we see inttan^3x=tan^2x/2+lnabs(cosx)+Ctan3x=tan2x2+ln|cosx|+C.

Third Integral
Thankfully, intsinxdxsinxdx is the most simple of all: it's just -cosx+Ccosx+C.

Now put all of it together:

  • intcos^2xdx=(2x+sin2x)/4+C_1cos2xdx=2x+sin2x4+C1
  • inttan^3xdx=tan^2x/2+lnabs(cosx)+C_2tan3xdx=tan2x2+ln|cosx|+C2
  • intsinxdx=-cosx+C_3sinxdx=cosx+C3
    intcos^2xdx-inttan^3xdx+intsinxdx=(2x+sin2x)/4+C_1-tan^2x/2-lnabs(cosx)+C_2-cosx+C_3=(2x+sin2x)/4-tan^2x/2-lnabs(cosx)-cosx+C

We are being asked for the value of C if f(pi/6)=1:
1=(2(pi/6)+sin2(pi/6))/4-tan^2(pi/6)/2-lnabs(cos(pi/6))-cos(pi/6)+C
1=(pi/3+sqrt(3)/2)/4-(1/3)/2-lnabs(sqrt(3)/2)-sqrt(3)/2+C
1=(2pi+3sqrt(3))/24-1/6-lnabs(sqrt(3)/2)-sqrt(3)/2+C
1=(2pi+3sqrt(3)-4)/24-lnabs(sqrt(3)/2)-sqrt(3)/2+C
C=-(2pi+3sqrt(3)-4)/24+lnabs(sqrt(3)/2)+sqrt(3)/2+1
C=(28-2pi-3sqrt(3))/24+lnabs(sqrt(3)/2)+sqrt(3)/2

Thus f(x)=(2x+sin2x)/4-tan^2x/2-lnabs(cosx)-cosx+(28-2pi-3sqrt(3))/24+lnabs(sqrt(3)/2)+sqrt(3)/2