What is #f(x) = int -cos^3x +tanx dx# if #f(pi)=-2 #?
1 Answer
Mar 20, 2016
Explanation:
This can be split into two integrals:
#f(x)=-intcos^3xdx+inttanxdx#
The second integral
To find the first, do what follows:
#-intcos^3xdx=-intcos^2xcosxdx#
#=-int(1-sin^2x)cosxdx#
Here, use substitution: let
#=-int1-u^2du#
Which we can integrate using
#=-u+u^3/3+C=-sinx+sin^3x/3+C#
Thus, the whole expression equals
#f(x)=-sinx+sin^3x/3-lnabscosx+C#
Since
#-2=-sinpi+sin^3pi/3-lnabscospi+C#
#-2=-0+0^3/3-lnabs(-1)+C#
#-2=0+0+ln1+C#
#-2=C#
Thus, we obtain
#f(x)=-sinx+sin^3x/3-lnabscosx-2#