What is f(x) = int -cos6x -3tanx dxf(x)=cos6x3tanxdx if f(pi)=-1 f(π)=1?

1 Answer
Sep 8, 2016

Answer is:

f(x)=-1/6sin(6x)+3ln|cosx|-1f(x)=16sin(6x)+3ln|cosx|1

Explanation:

f(x)=int(-cos6x-3tanx)dxf(x)=(cos6x3tanx)dx

f(x)=-intcos(6x)dx-3inttanxdxf(x)=cos(6x)dx3tanxdx

For the first integral:

6x=u6x=u

(d(6x))/(dx)=(du)/dxd(6x)dx=dudx

6=(du)/dx6=dudx

dx=(du)/6dx=du6

Therefore:

f(x)=-intcosu(du)/6-3intsinx/cosxdxf(x)=cosudu63sinxcosxdx

f(x)=-1/6intcosudu-3int((-cosx)')/cosxdx

f(x)=-1/6intcosudu+3int((cosx)')/cosxdx

f(x)=-1/6sinu+3ln|cosx|+c

f(x)=-1/6sin(6x)+3ln|cosx|+c

Since f(π)=-1

f(π)=-1/6sin(6π)+3ln|cosπ|+c

-1=-1/6*0+3ln|-1|+c

-1=3ln1+c

c=-1

Therefore:

f(x)=-1/6sin(6x)+3ln|cosx|-1