What is f(x) = int cosx-sec^2x dxf(x)=cosxsec2xdx if f(pi/8)=-1 f(π8)=1?

1 Answer
Mar 14, 2016

f(x)=sinx-tanx-(sqrt(2-sqrt(2))-2sqrt(2)+4)/2f(x)=sinxtanx2222+42

Explanation:

To begin, let's first apply the sum rule to break intcosx-sec^2xdxcosxsec2xdx into intcosxdx-intsec^2xdxcosxdxsec2xdx. Now we can evaluate these integrals one by one:
intcosxdx=sinx+C->cosxdx=sinx+C (the derivative of sine is cosine, so the antiderivative of cosine is sine)
intsec^2xdx=tanx+C->sec2xdx=tanx+C (same logic)

The whole solution is: f(x)=sinx+C-tanx+Cf(x)=sinx+Ctanx+C. Because CC is just some constant, C+CC+C is just another constant, so we can write: f(x)=sinx-tanx+Cf(x)=sinxtanx+C. To solve for CC, we use the given initial condition that f(pi/8)=-1f(π8)=1:
-1=sin(pi/8)-tan(pi/8)+C1=sin(π8)tan(π8)+C
-1=(sqrt(2-sqrt(2)))/2-(sqrt(2)-1)+C1=222(21)+C
0=(sqrt(2-sqrt(2)))/2-sqrt(2)+2+C0=2222+2+C
C=-(sqrt(2-sqrt(2))-2sqrt(2)+4)/2~~-0.968C=2222+420.968

Thus, f(x)=sinx-tanx-(sqrt(2-sqrt(2))-2sqrt(2)+4)/2f(x)=sinxtanx2222+42, or, using an approximation, f(x)=sinx-tanx-0.968f(x)=sinxtanx0.968.