What is #f(x) = int cotx-sec2x dx# if #f(pi/3)=-1 #?

1 Answer
Jun 12, 2018

#f(x) = lnabs(sinx) -1/2 ln abs(secx+tanx) -1 -1/2 ln3+ln2 +1/2 ln (2 +sqrt3)#

Explanation:

#f(x) = -1+int_(pi/3)^x (cot t -sec 2t) dt#

using the linearity of the integral:

#f(x) = -1+int_(pi/3)^x cot t dt -int_(pi/3)^x sec 2t dt#

#f(x) = -1+int_(pi/3)^x cost/sint dt -1/2 int_(pi/3)^x sec 2t d(2t)#

#f(x) = -1+int_(pi/3)^x (d(sint))/sint dt -1/2 int_(pi/3)^x sec 2t d(2t)#

#f(x) = -1+ lnabs(sinx)-ln abs sin(pi/3) -1/2 ln abs(sec2x+tan2x) +1/2 ln abs(sec((2pi)/3) + tan((2pi)/3))#

#f(x) = lnabs(sinx) -1/2 ln abs(secx+tanx) -1 -ln (sqrt3/2 )+1/2 ln abs(-2 -sqrt3)#

#f(x) = lnabs(sinx) -1/2 ln abs(secx+tanx) -1 -1/2 ln3+ln2 +1/2 ln (2 +sqrt3)#