What is f(x) = int cotx-tan2x dxf(x)=cotxtan2xdx if f(pi/3)=-1 f(π3)=1?

1 Answer
Jan 2, 2017

We can separate the integral.

f(x) = int(cotx)dx - int(tan2x)dxf(x)=(cotx)dx(tan2x)dx

f(x) = int(cosx/sinx)dx - int((sin2x)/(cos2x))dxf(x)=(cosxsinx)dx(sin2xcos2x)dx

For int(cosx/sinx)dx(cosxsinx)dx

Let u = sinxu=sinx, then du = cosxdxdu=cosxdx and dx = (du)/cosxdx=ducosx.

int(tanx) = int(cosx/u)((du)/cosx) = int(1/u)du = ln|u| = ln|sinx|(tanx)=(cosxu)(ducosx)=(1u)du=ln|u|=ln|sinx|

For int(tan2x)(tan2x):

Let u = 2xu=2x. Then du = 2dx -> dx = 1/2dudu=2dxdx=12du.

int(sin2x)/(cos2x)dx = int(sinu/cosu)1/2du = 1/2int(sinu/cosu)dusin2xcos2xdx=(sinucosu)12du=12(sinucosu)du

Let v = cosuv=cosu. Then dv = -sinududv=sinudu and du = (dv)/(-sinu)du=dvsinu.

1/2int(sinu)/(cosu)du = 1/2int(sinu)/v * (dv)/(-sinu) = -1/2int(1/v)dv = -1/2ln|cosu| = -1/2ln|cos2x|12sinucosudu=12sinuvdvsinu=12(1v)dv=12ln|cosu|=12ln|cos2x|

Putting this together, we get:

f(x) = ln|sinx| + 1/2ln|cos2x| + C ->f(x)=ln|sinx|+12ln|cos2x|+C We can't forget to add the constant, CC.

Our initial values are that when x= pi/3x=π3, y = -1y=1. Use this to solve for CC:

-1 = ln|sin(pi/3)| + 1/2ln|cos(2(pi/3))| + C1=lnsin(π3)+12lncos(2(π3))+C

-1 = ln(sqrt(3)/2) + 1/2ln|1/2| + C1=ln(32)+12ln12+C

C = -1 - 1/2ln(3/4) + 1/2ln(1/2)C=112ln(34)+12ln(12)

C = -1 - 1/2(ln(3/4) + ln1/2)C=112(ln(34)+ln12)

C = -1 - 1/2(ln(3/8))C=112(ln(38))

This can be approximated to C = -0.51C=0.51.

Therefore, the function with these initial values is f(x) = ln|sinx| + 1/2ln|cos2x| - 0.51f(x)=ln|sinx|+12ln|cos2x|0.51.

Hopefully this helps!