What is f(x) = int e^(2x)-e^x+x^2 dxf(x)=e2xex+x2dx if f(1) = 0 f(1)=0?

1 Answer
Jul 10, 2017

Zero.

Explanation:

First integrate:

f(x)=inte^(2x)-e^x+x^2dxf(x)=e2xex+x2dx

=1/2e^(2x)-e^x+1/3x^3+C=12e2xex+13x3+C

So, for f(1)=0f(1)=0, we have:

0=1/2e^2-e+1/3+C0=12e2e+13+C

Then you can solve for C.

C=-e^2/2+e-1/3C=e22+e13

So,

f(x)=inte^(2x)-e^x+x^2dx=1/2e^2-e+1/3+(-e^2/2+e-1/3)f(x)=e2xex+x2dx=12e2e+13+(e22+e13)

=0=0