What is f(x) = int e^(2x)-e^x+x^2 dxf(x)=∫e2x−ex+x2dx if f(1) = 0 f(1)=0?
1 Answer
Jul 10, 2017
Zero.
Explanation:
First integrate:
f(x)=inte^(2x)-e^x+x^2dxf(x)=∫e2x−ex+x2dx
=1/2e^(2x)-e^x+1/3x^3+C=12e2x−ex+13x3+C
So, for
0=1/2e^2-e+1/3+C0=12e2−e+13+C
Then you can solve for C.
C=-e^2/2+e-1/3C=−e22+e−13
So,
f(x)=inte^(2x)-e^x+x^2dx=1/2e^2-e+1/3+(-e^2/2+e-1/3)f(x)=∫e2x−ex+x2dx=12e2−e+13+(−e22+e−13)
=0=0